ТД АсбоЦем. Все права защищены.     www.asbocem.ru     (495) 799-40-54

Hosted by Хостинг-Центр
Яндекс.Метрика
Физико-механические свойства асбестоцемента.
Прочностные и деформативные свойства

       Асбестоцемент обладает свойством ползучести, связанной с наличием в цементном камне мелкокристаллических образований, характеризуемой способностью к пластическим деформациям. Такие деформации существенно проявляются при длительных воздействиях нагрузок и могут достигать 55-60% предельных. В связи с ползучестью длительно действующие нагрузки могут разрушать асбестоцемент при напряжениях, составляющих 70-80% 6рас, полученного при машинных испытаниях материала. Его ползучесть почти не проявляется. если нагрузки не превышают 35-40% разрушающих.
       Усадка, температурные и влажностные деформации асбестоцемента. Во время твердения асбестоцемента происходит усадка материала, вызываемая контракцией (сжатием) системы. Переход части капиллярной влаги в состав новообразований, как и высушивание в капиллярных телах, сопровождается усадкой. Усадка при твердении изделий в зависимости от вида цемента, плотности полуфабриката, содержания асбеста и режимов твердения составляет 0,35-1,5 мм/м. Усадка возрастает при использовании высокоалюминатных цементов, особенно с высокой удельной поверхностью (3500-4000 см2/г). При использовании песчанистого портландцемента усадка снижается в 1,5-2 раза. Скорость усадки - наибольшая в первые дни твердения - в возрасте 14-28 сут. заметно снижается.
       Температурные относительные деформации et затвердевшего изделия при положительной температуре, а неувлажненного и при отрицательной, линейно зависят от температуры:

et = at Dt
     
       При изменениях влажности W асбестоцемента возникают его влажностные деформации (ew), Высушивание его приводит к усадке (-ew), а водонасыщение к набуханию (+ew). ew зависит от состава сырья для изготовления асбестоцемента, его плотности, возраста, режимов обводнения и высушивания и может составлять 0,03-0,3%. Последнее значение соответствует изменению W асбестоцемента от 0 до 24-25%. Изделия, изготовленные на песчанистом портландцементе автоклавной технологии, имеют значения ew в 1,5-1,7 раза меньше, чем при использовании портландцемента. При изменении W изделия, изготовленного на асбесте 5-й и 6-й групп, от полностью высушенного до водонасыщенного состояния приближенно ew = - 0,42r0 + 0,88%.
       Следствием влажностных деформаций асбестоцемента является его коробление, возникающее при намокании или высушивании из-за перепада W по толщине материала. Максимальная величина стрелы коробления возникает при одностороннем увлажнении (либо сушке) асбестоцемента в зависимости от его плотности и состава через 5-25 мин. после начала процесса, затем она уменьшается. Коробление - недостаток, и у крупноразмерных деталей стрела коробления может достигать нескольких сантиметров. При жестком закреплении асбестоцемента напряжения, вызванные перепадом W, могут достигнуть предела прочности материала и привести к трещинам в конструкции. Поэтому асбестоцементные изделия в конструкции закрепляют с помощью податливых связей, обеспечивающих свободу деформирования материала.
       Морозостойкость асбестоцемента - важное условие его долговечности. Стандарты на изделия из асбестоцемента предусматривают нормативы Мрз 25 либо 50 цикл попеременных замораживаний и оттаиваний без снижения sизг более чем на 10% и без внешних признаков разрушения материала.
       
Морозостойкость и теплопроводность асбестоцемента

       На морозостойкость асбестоцемента влияют состав сырья, параметры формования и плотность материала. Увеличение количества и качества асбеста приводит, как правило, к повышению морозостойкости изделия. Понижение морозостойкости проявляется при использовании в сырьевой композиции повышенного содержания асбеста мягкой текстуры (более 15-20% его общего содержания). Состав и дисперсность цемента оказывают влияние на морозостойкость асбестоцемента, изменяя его пористость и структуру. Наибольшей морозостойкостью обладает изделие, изготовленное на белитовом цементе с содержанием 40-45% двухкальциевого силиката.
         Понижение морозостойкости зависит от содержания в цементе трехкальциевого алюмината, так, увеличение его содержания более 6% понижает морозостойкость асбестоцемента тем больше, чем выше тонкость помола цемента. Это влияние может быть устранено за счет подбора оптимальных добавок гипса в цемент и соответствующей его удельной поверхности. Технологические факторы, способствующие увеличению ре асбестоцемента, одновременно повышают и его морозостойкость.
        Теплопроводность асбестоцемента в воздушно-сухом состоянии при r0 = 1,9 г/см3 составляет 0,35 Вт/(м·град). Изменения r0 в пределах 1,5-2 г/см3 мало влияют на его теплопроводность. Удельная теплоемкость асбестоцемента может быть принята 0,8 кДж/°·кг. Асбестоцемент выдерживает нагревание до 150°С без снижения прочности. При нагревании до более высоких температур и последующем воздушном охлаждении его прочность снижается следующим образом:

Температура, °С                      Снижение sизг, %

       400                                             10 - 15
       500                                             45 - 55
       600                                             60 - 70
       800                                             80 - 85



          Страница   1  2  3  4  5  6  7  8
Т о р г о в ы й   Д о м   А с б о Ц е м
(495) 799-40-54  asbocem@mail.ru